67 research outputs found

    A neural network prototyping package within IRAF

    Get PDF
    We outline our plans for incorporating a Neural Network Prototyping Package into the IRAF environment. The package we are developing will allow the user to choose between different types of networks and to specify the details of the particular architecture chosen. Neural networks consist of a highly interconnected set of simple processing units. The strengths of the connections between units are determined by weights which are adaptively set as the network 'learns'. In some cases, learning can be a separate phase of the user cycle of the network while in other cases the network learns continuously. Neural networks have been found to be very useful in pattern recognition and image processing applications. They can form very general 'decision boundaries' to differentiate between objects in pattern space and they can be used for associative recall of patterns based on partial cures and for adaptive filtering. We discuss the different architectures we plan to use and give examples of what they can do

    Lidar System Model for Use With Path Obscurants and Experimental Validation

    Get PDF
    When lidar pulses travel through a short path that includes a relatively high concentration of aerosols, scattering phenomena can alter the power and temporal properties of the pulses significantly, causing undesirable effects in the received pulse. In many applications the design of the lidar transmitter and receiver must consider adverse environmental aerosol conditions to ensure the desired performance. We present an analytical model of lidar system operation when the optical path includes aerosols for use in support of instrument design, simulations, and system evaluation. The model considers an optical path terminated with a solid object, although it can also be applied, with minor modifications, to cases where the expected backscatter occurs from nonsolid objects. The optical path aerosols are characterized by their attenuation and backscatter coefficients derived by the Mie theory from the concentration and particle size distribution of the aerosol. Other inputs include the lidar system parameters and instrument response function, and the model output is the time-resolved received pulse. The model is demonstrated and experimentally validated with military fog oil smoke for short ranges (several meters). The results are obtained with a lidar system operating at a wavelength of 0.905 μm within and outside the aerosol. The model goodness of fit is evaluated using the statistical coefficient of determination whose value ranged from 0.88 to 0.99 in this study

    Improvement for detection of microcalcifications through clustering algorithms and artificial neural networks

    Get PDF
    A new method for detecting microcalcifications in regions of interest (ROIs) extracted from digitized mammograms is proposed. The top-hat transform is a technique based on mathematical morphology operations and, in this paper, is used to perform contrast enhancement of the mi-crocalcifications. To improve microcalcification detection, a novel image sub-segmentation approach based on the possibilistic fuzzy c-means algorithm is used. From the original ROIs, window-based features, such as the mean and standard deviation, were extracted; these features were used as an input vector in a classifier. The classifier is based on an artificial neural network to identify patterns belonging to microcalcifications and healthy tissue. Our results show that the proposed method is a good alternative for automatically detecting microcalcifications, because this stage is an important part of early breast cancer detectio

    Myocardial tagging by Cardiovascular Magnetic Resonance: evolution of techniques--pulse sequences, analysis algorithms, and applications

    Get PDF
    Cardiovascular magnetic resonance (CMR) tagging has been established as an essential technique for measuring regional myocardial function. It allows quantification of local intramyocardial motion measures, e.g. strain and strain rate. The invention of CMR tagging came in the late eighties, where the technique allowed for the first time for visualizing transmural myocardial movement without having to implant physical markers. This new idea opened the door for a series of developments and improvements that continue up to the present time. Different tagging techniques are currently available that are more extensive, improved, and sophisticated than they were twenty years ago. Each of these techniques has different versions for improved resolution, signal-to-noise ratio (SNR), scan time, anatomical coverage, three-dimensional capability, and image quality. The tagging techniques covered in this article can be broadly divided into two main categories: 1) Basic techniques, which include magnetization saturation, spatial modulation of magnetization (SPAMM), delay alternating with nutations for tailored excitation (DANTE), and complementary SPAMM (CSPAMM); and 2) Advanced techniques, which include harmonic phase (HARP), displacement encoding with stimulated echoes (DENSE), and strain encoding (SENC). Although most of these techniques were developed by separate groups and evolved from different backgrounds, they are in fact closely related to each other, and they can be interpreted from more than one perspective. Some of these techniques even followed parallel paths of developments, as illustrated in the article. As each technique has its own advantages, some efforts have been made to combine different techniques together for improved image quality or composite information acquisition. In this review, different developments in pulse sequences and related image processing techniques are described along with the necessities that led to their invention, which makes this article easy to read and the covered techniques easy to follow. Major studies that applied CMR tagging for studying myocardial mechanics are also summarized. Finally, the current article includes a plethora of ideas and techniques with over 300 references that motivate the reader to think about the future of CMR tagging

    The Fiscal Consequences of Electoral Institutions

    Full text link
    corecore